2024
J. Ortega-Julia, D. Ortega, J. Leliaert «Magnetic heating of interacting nanoparticles under different driving field waveforms» Appl. Phys. Lett. 125 (2024) 122408 . Editor’s Pick
2023
J. Ortega-Julia, D. Ortega, J. Leliaert «Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia» Nanoscale 16 (2023) 10342-10350
A. Santana-Otero, D. Gómez-Cerezo, C. Lozano-Pedraza, R. López, E. Sanz, J. Ortega-Juliá, A. Espinosa, F. J. Terán, D. Ortega «Ferrite nanoparticles for hyperthermia applications» in Ferrite Nanostructured Magnetic Materials, p. 805-829 (2023) Elsevier
A. Santana-Otero, D. Gómez-Cerezo, C. Lozano-Pedraza, R. López, E. Sanz, J. Ortega-Juliá, A. Espinosa, F. J. Terán, D. Ortega «Ferrite nanoparticles for hyperthermia applications» in «Ferrite nanostructured magnetic materials: technologies and applications» Ed. Jitendra Pal Singh, Keun Hwa Chae, R. C. Srivastava and Ovidiu Florin Caltun (2023) 775-803
A. Oluwasamni; J. Ortega-Juliá; A. Santana-Otero; C. Hoskins; S. Soenen; B. Manshian; D. Ortega «Nanostructured ferrite materials for theranostics» in «Ferrite nanostructured magnetic materials: technologies and applications» Ed. Jitendra Pal Singh, Keun Hwa Chae, R. C. Srivastava and Ovidiu Florin Caltun, (2023) 805-829
Javier Ortega-Julia, Daniel Ortega and Jonathan Leliaert “Estimating the heating of complex nanoparticle aggregates for magnetic hyperthermia” Nanoscale 15 (2023) 10342 – 10350
Lucía Gandarias, Elizabeth M. Jefremovas, David Gandia, Lourdes Marcano, Virginia Martínez-Martínez, Pedro Ramos-Cabrer, Daniel M. Chevrier, Sergio Valencia, Luis Fernández Barquín, M. Luisa Fdez-Gubieda, Javier Alonso, Ana García-Prieto, Alicia Muela «Incorporation of Tb and Gd improves the diagnostic functionality of magnetotactic bacteria» Materials Today Bio 20 (2023) 100680
Lucía Gandarias, Alicia G. Gubieda, Giulio Gorni, Olivier Mathon, Luca Olivi, Ana Abad-Díaz-de-Cerio, M. Luisa Fdez-Gubieda, Alicia Muela, Ana García-Prieto «Intracellular transformation and disposal mechanisms of magnetosomes in macrophages and cancer cells» Biotechnology Journal 18 (2023) 2300173
D. Gandia, L. Marcano, L. Gandarias, D. Villanueva, I. Orue, R. M. Abrudan, S. Valencia, I. Rodrigo, J. Ángel García and A. Muela, ACS Applied Materials & Interfaces, 2023, 15, 1, 566–577
L. García, E. Garaio, A. López-Ortega, I. Galarreta-Rodriguez, L. Cervera-Gabalda, G. Cruz-Quesada, A. Cornejo, J. J. Garrido, C. Gómez-Polo and J. I. Pérez-Landazábal, Langmuir, 2023, 39, 211–219
C. Escudero-Duch, L. Muñoz-Moreno, F. Martin-Saavedra, S. Sanchez-Casanova, M. A. Lerma-Juarez and N. Vilaboa, Journal of Photochemistry and Photobiology B: Biology, 2023, 242, 112697
Egea-Benavente D, Díaz-Ufano C, Gallo-Cordova A, Cuya J, Barber DF, Morales MP, Balachandran J. “Cubic mesocrystal magnetic iron oxide nanoparticles formation by oriented aggregation of cubes in organic media: a rational design to enhance the magnetic hyperthermia efficiency”. En revisión en ACS Applied Materials & Interfaces (am-2023-03254p)
2022
O. Bottauscio, I. Rubia-Rodríguez, A. Arduino, L. Zilberti, M. Chiampi and D. Ortega, «Heating of metallic biliary stents during magnetic hyperthermia of patients with pancreatic ductal adenocarcinoma: an in silico study» International Journal of Hyperthermia, 2022, 39, 1222-1232
M. I. Falguera Uceda, S. Sánchez-Casanova, C. Escudero-Duch and N. Vilaboa, Pharmaceutics, 2022, 14, 132
E. M. Jefremovas, L. Gandarias, L. Marcano, A. Gacía-Prieto, I. Orue, A. Muela, M. Fdez-Gubieda, L. F. Barquín and J. Alonso, Nanoscale Advances, 2022, 4, 2649-2659
P. Q. Thong, L. T. Thu Huong, N. D. Tu, H. T. My Nhung, L. Khanh, D. H. Manh, P. H. Nam, N. X. Phuc, J. Alonso and J. Qiao, Nanomedicine, 2022, 17, 1627-1745 doi: 10.2217/nnm-2022-0070
A. Santana Otero, M. E. Fortes-Brollo, M. del P. Morales, and D. Ortega, “Microwave-assisted ultra-stable to oxidation NixFe1-x nanoclusters in aqueous media,” Nanoscale. Royal Society of Chemistry (RSC), 2022. doi: 10.1039/d2nr03629k.
B. Herrero de la Parte et al., “Proposal of New Safety Limits for In Vivo Experiments of Magnetic Hyperthermia Antitumor Therapy,” Cancers, vol. 14, no. 13. MDPI AG, p. 3084, Jun. 23, 2022. doi: 10.3390/cancers14133084
D. Cabrera et al., “Superparamagnetic-blocked state transition under alternating magnetic fields: towards determining the magnetic anisotropy in magnetic suspensions,” Nanoscale, vol. 14, no. 24. Royal Society of Chemistry (RSC), pp. 8789–8796, 2022. doi: 10.1039/d2nr00808d
2021
I. Castellanos-Rubio, O. Arriortua, L. Marcano, I. Rodrigo, D. Iglesias-Rojas, A. Barón, A. Olazagoitia-Garmendia, L. Olivi, F. Plazaola, M.L. Fdez-Gubieda, Shaping up Zn-doped magnetite nanoparticles from mono-and bimetallic oleates: the impact of Zn content, Fe vacancies, and morphology on magnetic hyperthermia performance, Chemistry of Materials 33(9) (2021) 3139-3154
R. Das, J.A. Masa, V. Kalappattil, Z. Nemati, I. Rodrigo, E. Garaio, J.Á. García, M.-H. Phan, H. Srikanth, Iron oxide nanorings and nanotubes for magnetic hyperthermia: the problem of intraparticle interactions, Nanomaterials 11(6) (2021) 1380
D. Egea-Benavente, J.G. Ovejero, M.d.P. Morales, D.F. Barber, Understanding MNPs behaviour in response to AMF in biological milieus and the effects at the cellular level: Implications for a rational design that drives magnetic hyperthermia therapy toward clinical implementation, Cancers 13(18) (2021) 4583
V. Mulens-Arias, J.M. Rojas, D.F. Barber, The use of iron oxide nanoparticles to reprogram macrophage responses and the immunological tumor microenvironment, Frontiers in immunology 12 (2021) 693709
E. M. Jefremovas et al., “Nanoflowers Versus Magnetosomes: Comparison Between Two Promising Candidates for Magnetic Hyperthermia Therapy,” IEEE Access, vol. 9. Institute of Electrical and Electronics Engineers (IEEE), pp. 99552–99561, 2021. doi: 10.1109/access.2021.3096740
E. Navarro-Palomares et al., “Targeting Nanomaterials to Head and Neck Cancer Cells Using a Fragment of the Shiga Toxin as a Potent Natural Ligand,” Cancers, vol. 13, no. 19. MDPI AG, p. 4920, Sep. 30, 2021. doi: 10.3390/cancers13194920
G. Cotin et al., “Unveiling the role of surface, size, shape and defects of iron oxide nanoparticles for theranostic applications,” Nanoscale, vol. 13, no. 34. Royal Society of Chemistry (RSC), pp. 14552–14571, 2021. doi: 10.1039/d1nr03335b
I. Rubia-Rodríguez, L. Zilberti, A. Arduino, O. Bottauscio, M. Chiampi, and D. Ortega, “In silico assessment of collateral eddy current heating in biocompatible implants subjected to magnetic hyperthermia treatments,” International Journal of Hyperthermia, vol. 38, no. 1. Informa UK Limited, pp. 846–861, Jan. 01, 2021. doi: 10.1080/02656736.2021.1909758
C. Lozano-Pedraza et al., “Assessing the parameters modulating optical losses of iron oxide nanoparticles under near infrared irradiation,” Nanoscale Advances, vol. 3, no. 22. Royal Society of Chemistry (RSC), pp. 6490–6502, 2021. doi: 10.1039/d1na00601k
I. Morales, R. Costo, N. Mille, J. Carrey, A. Hernando, and P. de la Presa, “Time-dependent AC magnetometry and chain formation in magnetite: the influence of particle size, initial temperature and the shortening of the relaxation time by the applied field,” Nanoscale Advances, vol. 3, no. 20. Royal Society of Chemistry (RSC), pp. 5801–5812, 2021. doi: 10.1039/d1na00463h
E. Ximendes et al., “Infrared‐Emitting Multimodal Nanostructures for Controlled In Vivo Magnetic Hyperthermia,” Advanced Materials, vol. 33, no. 30. Wiley, p. 2100077, Jun. 12, 2021. doi: 10.1002/adma.202100077
J. Leliaert, J. Ortega-Julia, and D. Ortega, “Individual particle heating of interacting magnetic nanoparticles at nonzero temperature,” Nanoscale, vol. 13, no. 35. Royal Society of Chemistry (RSC), pp. 14734–14744, 2021. doi: 10.1039/d1nr05311f
B. Herrero de la Parte et al., “Biochemical and Metabolomic Changes after Electromagnetic Hyperthermia Exposure to Treat Colorectal Cancer Liver Implants in Rats,” Nanomaterials, vol. 11, no. 5. MDPI AG, p. 1318, May 17, 2021. doi: 10.3390/nano11051318
J. Wells et al., “Challenges and recommendations for magnetic hyperthermia characterization measurements,” International Journal of Hyperthermia, vol. 38, no. 1. Informa UK Limited, pp. 447–460, Jan. 01, 2021. doi: 10.1080/02656736.2021.1892837
J. Lifante et al., “Reaching Deeper: Absolute In Vivo Thermal Reading of Liver by Combining Superbright Ag 2 S Nanothermometers and In Silico Simulations,” Advanced Science, vol. 8, no. 9. Wiley, p. 2003838, Mar. 03, 2021. doi: 10.1002/advs.202003838
A. Espinosa, F. J. Teran, and D. Ortega, “Introduction to Nanomaterials Applied to Life Sciences,” Nanoscale Advances, vol. 3, no. 5. Royal Society of Chemistry (RSC), pp. 1165–1166, 2021. doi: 10.1039/d1na90011k
I. Rubia-Rodríguez et al., “Whither Magnetic Hyperthermia? A Tentative Roadmap,” Materials, vol. 14, no. 4. MDPI AG, p. 706, Feb. 03, 2021. doi: 10.3390/ma14040706
2020
I. Castellanos-Rubio, I. Rodrigo, A. Olazagoitia-Garmendia, O. Arriortua, I. Gil de Muro, J.S. Garitaonandia, J.R.n. Bilbao, M.L. Fdez-Gubieda, F. Plazaola, I.a. Orue, Highly reproducible hyperthermia response in water, agar, and cellular environment by discretely PEGylated magnetite nanoparticles, ACS applied materials & interfaces 12(25) (2020) 27917-27929
M. Fdez-Gubieda, J. Alonso, A. García-Prieto, A. García-Arribas, L. Fernández Barquín, A. Muela, Magnetotactic bacteria for cancer therapy, Journal of Applied Physics 128(7) (2020) 070902
M. Goiriena-Goikoetxea, D. Muñoz, I. Orue, M. Fernández-Gubieda, J. Bokor, A. Muela, A. García-Arribas, Disk-shaped magnetic particles for cancer therapy, Applied Physics Reviews 7(1) (2020) 011306
E. Navarro-Palomares et al., “Dye-doped biodegradable nanoparticle SiO2 coating on zinc- and iron-oxide nanoparticles to improve biocompatibility and for in vivo imaging studies,” Nanoscale, vol. 12, no. 10. Royal Society of Chemistry (RSC), pp. 6164–6175, 2020. doi: 10.1039/c9nr08743e
B. Herrero de la Parte, M. Irazola Duñabeitia, J. A. Carrero, N. Etxebarria Loizate, I. García-Alonso, and J. J. Echevarria-Uraga, “Intra-Arterial Infusion of Magnetic Nanoparticle-Based Theragnostic Agent to Treat Colorectal Cancer Liver Implants in Rats,” European Surgical Research, vol. 61, no. 4–5. S. Karger AG, pp. 136–142, 2020. doi: 10.1159/000512458
C. Escudero-Duch and N. Vilaboa, “Recent efforts in the development of nanomaterials to control transgene expression,” Nanomedicine, vol. 15, no. 21. Future Medicine Ltd, pp. 2019–2022, Sep. 2020. doi: 10.2217/nnm-2020-0227
2019
D. Gandia, L. Gandarias, I. Rodrigo, J. Robles‐García, R. Das, E. Garaio, J.Á. García, M.H. Phan, H. Srikanth, I. Orue, Unlocking the potential of magnetotactic bacteria as magnetic hyperthermia agents, Small 15(41) (2019) 1902626
X. Lasheras, M. Insausti, J.M. de la Fuente, I.G. de Muro, I. Castellanos-Rubio, L. Marcano, M.L. Fernández-Gubieda, A. Serrano, R. Martín-Rodríguez, E. Garaio, Mn-Doping level dependence on the magnetic response of Mn x Fe 3− x O 4 ferrite nanoparticles, Dalton Transactions 48(30) (2019) 11480-11491